Posts tagged biogeochemistry

Extended Core Components

Iris Ehlert

Our extendend core components cover models for a comprehensive mapping of the Earth System and its interactions (e.g., atmospheric chemistry, ocean biogeochemistry, land ice, socioeconomics). While not required by the majority of users, these components offer flexibility for specific research questions. Our current extended core components include a tool that adds the capability to simulate aerosols and reactive trace gases to our core components (ICON-ART). It is the responsibility of natESM to seamlessly integrate these extended core components into the natESM system.

Read more ...


HAMOCC - HAMburg Ocean Carbon Cycle

Fatemeh Chegini, Tatiana Ilyina

The HAMburg Ocean Carbon Cycle (HAMOCC) model is the ocean biogeochemistry component in ICON and MPI-ESM (Ilyina et al., 2013). HAMOCC simulates at least 20 biogeochemical tracers in the water column, following an extended nutrient, phytoplankton, zooplankton, and detritus approach, also including dissolved organic matter, as described in Six and Maier-Reimer (1996). It also simulates the upper sediment by 12 biologically active layers and a burial layer to represent the dissolution and decomposition of inorganic and organic matter as well as the diffusion of pore water constituents. The co-limiting nutrients consist of phosphate, nitrate, silicate, and iron. A fixed stoichiometry for all organic compounds is assumed. Phytoplankton is represented by bulk phytoplankton and diazotrophs (nitrogen fixers). Particulate organic matter (POM) is produced by zooplankton grazing on bulk phytoplankton and enters the detritus pool. Export production is separated explicitly into CaCO3 and opal particles. The POM sinking speed can be assigned using one of the three implemented methods: constant speed, linearly increasing speed with depths below the euphotic zone (also known as the “Martin curve”; Martin et al., 1987) or calculated using the recently developed M4AGO scheme (Maerz et al., 2020). The remineralization of detritus throughout the water column is either aerobic (if seawater oxygen concentration >0.5 μmolL−1) or anaerobic by denitrification and sulfate reduction. The HAMOCC model as part of ICON and MPI-ESM and has been extensively evaluated and applied in previous single-model (e.g., Ilyina et al., 2013; Paulsen et al., 2017; Müller et al., 2018; Mauritsen et al., 2019; Maerz et al., 2020; Jungclaus et al. 2022, Hohenegger et al. 2022) and multi-model studies (e.g., Bopp et al., 2013; Kwiatkowski et al., 2020; Séférian et al., 2020).

Read more ...


REcoM - Regulated Ecosystem Model

Judith Hauck

REcoM is a water column biogeochemistry and ecosystem model, which incorporates cycles of carbon, nutrients (nitrogen, iron, and silicon) and oxygen with varying intracellular stoichiometry in phytoplankton, zooplankton, and detritus. REcoM can be run in configurations of varying complexity with up to three phytoplankton functional types (PFTs), namely diatoms, coccolithophores and small phytoplankton, up to three zooplankton types (micro- meso and polar microzooplankton) and up to two detritus classes (slow- and fast-sinking). REcoM can also simulate carbon and iron isotopes, and can be coupled to the sediment model Medusa. REcoM is the ocean biogeochemistry module of the AWI Earth System Model and is used for hindcasts, CMIP-type future projections and paleo applications.

Read more ...


Optional components

The following table lists, in alphabetical order, all models that have been presented by the corresponding institutions during past natESM events.

The fact that we have listed the models here does not imply that the models or parts of them will be part of the future natESM system.

Read more ...